login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/((1-x)*(1-x^3)*(1-x^8)*(1-x^9)).
1

%I #12 May 17 2017 03:18:12

%S 1,1,1,2,2,2,3,3,4,6,6,7,9,9,10,12,13,15,18,19,21,24,25,27,31,33,36,

%T 41,43,46,51,53,57,63,66,71,78,81,86,93,97,103,111,116,123,132,137,

%U 144,154,160,168,179,186,195,207

%N Expansion of 1/((1-x)*(1-x^3)*(1-x^8)*(1-x^9)).

%C Number of partitions of n into parts 1, 3, 8 and 9. - _Ilya Gutkovskiy_, May 16 2017

%H G. C. Greubel, <a href="/A029054/b029054.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_21">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 1, -1, 0, 0, 0, 1, 0, -1, -1, 0, 1, 0, 0, 0, -1, 1, 0, 1, -1).

%F a(0)=1, a(1)=1, a(2)=1, a(3)=2, a(4)=2, a(5)=2, a(6)=3, a(7)=3, a(8)=4, a(9)=6, a(10)=6, a(11)=7, a(12)=9, a(13)=9, a(14)=10, a(15)=12, a(16)=13, a(17)=15, a(18)=18, a(19)=19, a(20)=21, a(n)=a(n-1)+ a(n-3)- a(n-4)+ a(n-8)-a(n-10)-a(n-11)+a(n-13)-a(n-17)+a(n-18)+a(n-20)-a(n-21). - _Harvey P. Dale_, May 09 2013

%t CoefficientList[Series[1/((1-x)(1-x^3)(1-x^8)(1-x^9)),{x,0,60}],x] (* or *) LinearRecurrence[{1,0,1,-1,0,0,0,1,0,-1,-1,0,1,0,0,0,-1,1,0,1,-1},{1,1,1,2,2,2,3,3,4,6,6,7,9,9,10,12,13,15,18,19,21},60] (* _Harvey P. Dale_, May 09 2013 *)

%o (PARI) x='x+O('x^50); Vec(1/((1-x)*(1-x^3)*(1-x^8)*(1-x^9))) \\ _G. C. Greubel_, May 17 2017

%K nonn

%O 0,4

%A _N. J. A. Sloane_