login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029051
Expansion of 1/((1-x)(1-x^3)(1-x^7)(1-x^10)).
1
1, 1, 1, 2, 2, 2, 3, 4, 4, 5, 7, 7, 8, 10, 11, 12, 14, 16, 17, 19, 22, 24, 26, 29, 32, 34, 37, 41, 44, 47, 52, 56, 59, 64, 69, 73, 78, 84, 89, 94, 101, 107, 113, 120, 127, 134, 141, 149, 157, 165, 174, 183, 192, 201, 211
OFFSET
0,4
COMMENTS
Number of partitions of n into parts 1, 3, 7 and 10. - Ilya Gutkovskiy, May 14 2017
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 0, 1, -1, 0, 0, 1, -1, 0, 0, 0, 0, -1, 1, 0, 0, -1, 1, 0, 1, -1).
FORMULA
a(0)=1, a(1)=1, a(2)=1, a(3)=2, a(4)=2, a(5)=2, a(6)=3, a(7)=4, a(8)=4, a(9)=5, a(10)=7, a(11)=7, a(12)=8, a(13)=10, a(14)=11, a(15)=12, a(16)=14, a(17)=16, a(18)=17, a(19)=19, a(20)=22, a(n)=a(n-1)+a(n-3)-a(n-4)+a(n-7)-a(n-8)- a(n-13)+ a(n-14)-a(n-17)+a(n-18)+a(n-20)-a (n-21). - Harvey P. Dale, May 06 2013
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-x^3)(1-x^7)(1-x^10)), {x, 0, 70}], x] (* or *) LinearRecurrence[{1, 0, 1, -1, 0, 0, 1, -1, 0, 0, 0, 0, -1, 1, 0, 0, -1, 1, 0, 1, -1}, {1, 1, 1, 2, 2, 2, 3, 4, 4, 5, 7, 7, 8, 10, 11, 12, 14, 16, 17, 19, 22}, 70] (* Harvey P. Dale, May 06 2013 *)
PROG
(PARI) a(n)=floor((2*n^3+63*n^2+582*n+2456)/2520+2*((n%10<1)-(n%10>8))/5+(n+1)%3/9) \\ Tani Akinari, May 31 2014
CROSSREFS
Sequence in context: A077564 A088044 A351908 * A338826 A274201 A079398
KEYWORD
nonn
AUTHOR
STATUS
approved