Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jun 27 2022 23:40:09
%S 1,1,1,2,3,3,4,5,6,8,9,10,13,15,16,19,22,24,28,31,34,39,43,46,52,57,
%T 61,68,74,79,87,94,100,109,117,124,135,144,152,164,175,184,197,209,
%U 220,235,248,260,277,292,305,323
%N Expansion of 1/((1-x)*(1-x^3)*(1-x^4)*(1-x^9)).
%C Number of partitions of n into parts 1, 3, 4 and 9. - _Ilya Gutkovskiy_, May 14 2017
%H Vincenzo Librandi, <a href="/A029035/b029035.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_17">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1,0,-1,0,-1,1,1,-1,0,-1,0,1,0,1,-1).
%t (* From _Harvey P. Dale_, Jun 06 2017: (Start) *)
%t CoefficientList[Series[1/((1-x)(1-x^3)(1-x^4)(1-x^9)),{x,0,60}],x]
%t LinearRecurrence[{1,0,1,0,-1,0,-1,1,1,-1,0,-1,0,1,0,1,-1},{1,1,1,2,3,3,4,5,6,8,9,10,13,15,16,19,22},60] (* End *)
%o (Magma) m:=70; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)*(1-x^3)*(1-x^4)*(1-x^9)))); // _Vincenzo Librandi_, Jun 07 2017
%K nonn,easy
%O 0,4
%A _N. J. A. Sloane_