login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Odd 9-gonal (or enneagonal) numbers.
2

%I #14 Dec 27 2020 14:41:19

%S 1,9,75,111,261,325,559,651,969,1089,1491,1639,2125,2301,2871,3075,

%T 3729,3961,4699,4959,5781,6069,6975,7291,8281,8625,9699,10071,11229,

%U 11629,12871,13299,14625,15081,16491,16975,18469,18981,20559,21099,22761,23329,25075

%N Odd 9-gonal (or enneagonal) numbers.

%H Colin Barker, <a href="/A028991/b028991.txt">Table of n, a(n) for n = 0..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/NonagonalNumber.html">Nonagonal Number</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1).

%F a(n) = (28*n^2 + 4*n + 1 + (14*n+1)*(-1)^n)/2.

%F a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5) for n>4. - _Colin Barker_, May 30 2015

%F G.f.: -(19*x^4+20*x^3+64*x^2+8*x+1) / ((x-1)^3*(x+1)^2). - _Colin Barker_, May 30 2015

%t Select[PolygonalNumber[9,Range[100]],OddQ] (* Requires Mathematica version 10 or later *) (* or *) LinearRecurrence[{1,2,-2,-1,1},{1,9,75,111,261},50] (* _Harvey P. Dale_, Dec 27 2020 *)

%o (PARI) Vec(-(19*x^4+20*x^3+64*x^2+8*x+1)/((x-1)^3*(x+1)^2) + O(x^100)) \\ _Colin Barker_, May 30 2015

%Y Cf. A001106, A028992.

%K nonn,easy

%O 0,2

%A _Patrick De Geest_