login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Theta series of 8-d 6-modular lattice G_2 tensor F_4 (or A_2 tensor D_4) with det 1296 and minimal norm 4 in powers of q^2.
2

%I #28 Sep 08 2022 08:44:50

%S 1,0,72,192,504,576,2280,1728,4248,4800,7920,6336,19416,10368,21312,

%T 22464,33624,24192,63048,32832,65808,60864,83232,57600,155640,76032,

%U 137520,130944,180288,116928,290736

%N Theta series of 8-d 6-modular lattice G_2 tensor F_4 (or A_2 tensor D_4) with det 1296 and minimal norm 4 in powers of q^2.

%C Proposition 7.6 [McKay and Sebbar, 2000, p. 272, equ. (7.8)] expresses the theta series as a Schwarzian of A007258 and tau. - _Michael Somos_, Jun 05 2015

%H G. C. Greubel, <a href="/A028977/b028977.txt">Table of n, a(n) for n = 0..1000</a>

%H J. McKay and A. Sebbar, <a href="http://dx.doi.org/10.1007/s002080000116">Fuchsian groups, automorphic functions and Schwarzians</a>, Math. Ann., 318 (2000), 255-275.

%H G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/F8.6.html">Home page for this lattice</a>

%H E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/shad.html">The Shadow Theory of Modular and Unimodular Lattices</a>, J. Number Theory, 73 (1998), 359-389.

%H <a href="/index/Da#D4">Index entries for sequences related to D_4 lattice</a>

%F Expansion of ((eta(q^2) * eta(q^3))^7 / (eta(q) * eta(q^6))^5 - (eta(q) * eta(q^6))^7 / (eta(q^2) * eta(q^3))^5)^2 - 8 * (eta(q^2) * eta(q^4) * eta(q^6) * eta(q^12))^2 in powers of q. - _Michael Somos_, May 27 2012

%F A212817(n) = a(n) + 8 * A030209(n). - _Michael Somos_, May 27 2012

%F G.f. A(x) = g1(x)^2 * (1 - 4*g2(x) - 16*g2(x)^3 + 16*g2(x)^4) where g1(x) = A033712(x) and g2(x) = A212770(x). - _Michael Somos_, Apr 19 2015

%e G.f. = 1 + 72*x^2 + 192*x^3 + 504*x^4 + 576*x^5 + 2280*x^6 + 1728*x^7 + ...

%e G.f. = 1 + 72*q^4 + 192*q^6 + 504*q^8 + 576*q^10 + 2280*q^12 + 1728*q^14 + ...

%t a[ n_] := SeriesCoefficient[ With[{e1 = QPochhammer[ x] QPochhammer[ x^6], e2 = QPochhammer[ x^2] QPochhammer[ x^3]}, (e2^7 / e1^5 - x e1^7 /e2^5)^2 - 8 x (e1 e2)^2], {x, 0, n}]; (* _Michael Somos_, Apr 19 2015 *)

%o (PARI) {a(n) = local(A, B); if( n<0, 0, A = x * O(x^n); B = eta(x^2 + A) * eta(x^3 + A); A = eta(x + A) * eta(x^6 + A); polcoeff( (B^7 / A^5 - x * A^7 / B^5)^2 - 8 * x * (A * B)^2, n))}; /* _Michael Somos_, May 27 2012 */

%o (Magma) A := Basis( ModularForms( Gamma0(6), 4), 32); A[1] + 72*A[3] + 192*A[4] + 504*A[5]; /* _Michael Somos_, Aug 20 2014 */

%Y Cf. A007258, A030209, A033712, A212770, A212817.

%K nonn

%O 0,3

%A _N. J. A. Sloane_