login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A006720(n)^3 (cubed terms of Somos-4 sequence).
5

%I #37 Sep 08 2022 08:44:50

%S 1,1,1,1,8,27,343,12167,205379,30959144,3574558889,553185473329,

%T 578280195945297,238670664494938073,487424450554237378792,

%U 2035972062206737347698803,4801616835579099275862827431

%N a(n) = A006720(n)^3 (cubed terms of Somos-4 sequence).

%C If initial two 1's are omitted, denominator of y-coordinate of (2n+1)*P where P is the generator for rational points on the curve y^2 + y = x^3 - x.

%H Seiichi Manyama, <a href="/A028935/b028935.txt">Table of n, a(n) for n = 0..88</a>

%H B. Mazur, <a href="https://doi.org/10.1090/S0273-0979-1986-15430-3">Arithmetic on curves</a>, Bull. Amer. Math. Soc. 14 (1986), 207-259; see p. 225.

%F P = (0, 0), 2P = (1, 0); if kP = (a, b) then (k+1)P = (a' = (b^2 - a^3)/a^2, b' = -1 -b*a'/a).

%F a(n) = (129*a(n-1)*a(n-8) - 260*a(n-2)*a(n-7) - 8385*a(n-3)*a(n-6) + 48633*a(n-4)*a(n-5))/a(n-9). - _G. C. Greubel_, Feb 22 2018

%e 5P = (1/4, -5/8).

%t b[n_ /; 0 <= n <= 4] = 1; b[n_]:= b[n] = (b[n-1]*b[n-3] + b[n-2]^2)/b[n -4]; Table[(b[n])^3, {n,0,30}] (* _G. C. Greubel_, Feb 21 2018 *)

%t a[n_ /; 0 <= n <= 3] = 1; a[4]:= 8; a[5]:= 27; a[6]:= 343; a[7]:= 12167; a[8]:= 205379; a[9]:= 30959144; a[n_]:= a[n] = (129*a[n-1]*a[n-8] - 260*a[n-2]*a[n-7] - 8385*a[n-3]*a[n-6] + 48633*a[n-4]*a[n-5])/a[n-9]; Table[a[n], {n,0,30}] (* _G. C. Greubel_, Feb 22 2018 *)

%o (PARI) {b(n) = if(n< 4, 1, (b(n-1)*b(n-3) + b(n-2)^2)/b(n-4))};

%o for(n=0,30, print1((b(n))^3, ", ")) \\ _G. C. Greubel_, Feb 21 2018

%o (Magma) I:=[1,1,1,1,8,27,343,12167,205379]; [n le 9 select I[n] else (129*Self(n-1)*Self(n-8) - 260*Self(n-2)*Self(n-7) - 8385*Self(n-3)*Self(n-6) + 48633*Self(n-4)*Self(n-5))/Self(n-9): n in [1..30]]; // _G. C. Greubel_, Feb 22 2018

%Y Cf. A006720, A028934, A028943, A028945, A151502.

%K nonn

%O 0,5

%A _N. J. A. Sloane_

%E Edited by _N. J. A. Sloane_, May 14 2009