Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Sep 08 2022 08:44:50
%S 1,0,2,2,2,0,2,0,2,2,0,0,4,2,0,0,4,0,4,0,0,0,0,0,6,0,2,2,0,2,0,2,4,0,
%T 0,0,6,0,0,2,0,2,0,0,0,0,2,2,6,0,2,0,4,0,6,0,0,0,2,0,0,0,2,0,4,0,0,0,
%U 0,2,0,2,8,2,0,2,0,0,6,0,0,4,2,0,0,0,0,2,0,0,0,0,2,2,2,0,8,0,2,0,2,0,0,0,6
%N Theta series of quadratic form (or lattice) with Gram matrix [ 4, 1; 1, 6 ].
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%C The number of integer solutions to n = 2x^2 + xy + 3y^2. - _Michael Somos_, Oct 18 2005
%C In Osburn and Sahu (2010) the g.f. A(q) is denoted by F(z) where q = exp(2 pi i z). - _Michael Somos_, Sep 25 2013
%D Köklüce, Bülent. "Cusp forms in S_6 (Gamma_ 0(23)), S_8 (Gamma_0 (23)) and the number of representations of numbers by some quadratic forms in 12 and 16 variables." The Ramanujan Journal 34.2 (2014): 187-208. See Phi_1, p. 195.
%H John Cannon, <a href="/A028930/b028930.txt">Table of n, a(n) for n = 0..5000</a>
%H Robert Osburn, Brundaban Sahu, <a href="http://arxiv.org/abs/0912.0173">Congruences via modular forms</a>, arXiv:0912.0173 [math.NT], (Sep 02 2010)
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F G.f.: Sum_{i,j in Z} x^(2*i*i + i*j + 3*j*j). (This is the definition.) - _Michael Somos_, Sep 25 2013
%F Expansion of phi(q^2) * phi(q^46) + 2*q^3 * psi(q) * psi(q^23) + 4*q^12 * psi(q^4) * psi(q^92) in powers of q where phi(), psi() are Ramanujan theta functions. - _Michael Somos_, Sep 25 2013, corrected by _Sean A. Irvine_, Feb 13 2020
%F G.f. A(q) = f(t_2(q)) where f() is the g.f. for A224530 and t_2(q) = eta(q) * eta(q^23) / A(q). - _Michael Somos_, Sep 25 2013
%F G.f. is a period 1 Fourier series which satisfies f(-1 / (23 t)) = 23^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - _Michael Somos_, Sep 25 2013
%e For n=24 the solutions are [2,2], [3,-2], [3,1] and their negatives, so a(24)=6.
%e G.f. = 1 + 2*x^2 + 2*x^3 + 2*x^4 + 2*x^6 + 2*x^8 + 2*x^9 + 4*x^12 + ...
%e G.f. = 1 + 2*q^4 + 2*q^6 + 2*q^8 + 2*q^12 + 2*q^16 + 2*q^18 + 4*q^24 + 2*q^26 + 4*q^32 + 4*q^36 + 6*q^48 + 2*q^52 + 2*q^54 + 2*q^58 + 2*q^62 + 4*q^64 + 6*q^72 + ...
%t a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^2] EllipticTheta[ 3, 0, q^46] + EllipticTheta[ 2, 0, q^2] EllipticTheta[ 2, 0, q^46] + (1/2) EllipticTheta[ 2, 0, q^(1/2)] EllipticTheta[ 2, 0, q^(23/2)], {q, 0, n}]; (* _Michael Somos_, Sep 25 2013 *)
%t terms = 105; max = Sqrt[terms] // Ceiling; s = Sum[x^(2 i^2 + i*j + 3 j^2), {i, -max, max}, {j, -max, max}]; CoefficientList[s, x][[1 ;; terms]] (* _Jean-François Alcover_, Jul 07 2017, after _Michael Somos_ *)
%o (PARI) {a(n) = if( n<1, n==0, 2 * qfrep( [4, 1; 1, 6], n, 1)[n])}; /* _Michael Somos_, Oct 18 2005 */
%o (PARI) list(n)=concat(1,2*Vec(qfrep([4,1;1,6],n,1))) \\ _Charles R Greathouse IV_, Sep 25 2013
%o (Magma) A := Basis( ModularForms( Gamma1(23), 1), 116); A[1] + 2*A[3] +2*A[4] +2*A[5] +2*A[7] + 2*A[9] + 2*A[10]; /* _Michael Somos_, Aug 24 2014 */
%Y Cf. A030199, A106867, A224530.
%K nonn
%O 0,3
%A _N. J. A. Sloane_.