Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Oct 03 2023 13:16:53
%S 1,6,71,1261,29906,887751,31657851,1318279586,62783681421,
%T 3365947782611,200610405843926,13157941480889921,941848076798467801,
%U 73060842413607398806,6105266987293752470991,546770299628690541571901
%N Row sums of triangle A013988.
%H G. C. Greubel, <a href="/A028844/b028844.txt">Table of n, a(n) for n = 1..250</a>
%H Wolfdieter Lang, <a href="http://www.cs.uwaterloo.ca/journals/JIS/index.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
%F E.g.f.: exp(1 - (1-6*x)^(1/6)) - 1.
%F D-finite with recurrence: a(n) = 15*(2*n-7)*a(n-1) +5*(72*n^2-576*n+1169)*a(n-2) +45*(2*n-9)*(24*n^2-216*n+497)*a(n-3) -20*(324*n^4-6480*n^3+48735*n^2-163350*n+205877)*a(n-4) +12*(6*n-35)*(6*n-31)*(3*n-16)*(2*n-11)*(3*n-17)*a(n-5) +a(n-6). - _R. J. Mathar_, Jan 28 2020
%t With[{nn=20},Rest[CoefficientList[Series[Exp[1-(1-6x)^(1/6)]-1,{x,0,nn}], x]Range[0,nn]!]] (* _Harvey P. Dale_, Feb 02 2012 *)
%o (Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(1-(1-6*x)^(1/6)) -1 ))); // _G. C. Greubel_, Oct 03 2023
%o (SageMath)
%o def A028844_list(prec):
%o P.<x> = PowerSeriesRing(QQ, prec)
%o return P( exp(1-(1-6*x)^(1/6)) -1 ).egf_to_ogf().list()
%o a=A028844_list(40); a[1:] # _G. C. Greubel_, Oct 03 2023
%Y Sequences with e.g.f. exp(1-(1-m*x)^(1/m)) - 1: A000012 (m=1), A001515 (m=2), A015735 (m=3), A016036 (m=4), A028575 (m=5), this sequence (m=6).
%K nonn
%O 1,2
%A _Wolfdieter Lang_