Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Sep 08 2022 08:44:50
%S 3,6,7,12,14,15,17,24,27,28,29,30,33,34,35,37,39,41,43,47,48,53,54,56,
%T 57,58,59,60,61,63,66,68,69,70,71,74,75,77,78
%N Nonsquares mod 79.
%F Legendre symbol (a(n)/79) = -1. - _Alonso del Arte_, Jan 15 2017
%e x^2 = 7 mod 79 has no solutions, hence 7 is in the sequence.
%e x^2 = 8 mod 79 has the solutions x = 18 and x = 61, so 8 is not in the sequence.
%t Complement[Range[78], PowerMod[Range[78], 2, 79]] (* _Alonso del Arte_, Jan 15 2017 *)
%o (PARI) isok(n) = (n < 79) && (kronecker(n, 79) == -1); \\ _Michel Marcus_, Jan 15 2017
%o (PARI) isok(n) = (n < 79) && (! issquare(Mod(n, 79))); \\ _Michel Marcus_, Jan 15 2017
%o (Scala) (0 to 78).diff((1 to 79).map(n => n * n % 79)) // _Alonso del Arte_, Jan 22 2020
%o (Magma) [n: n in [0..78] | not IsSquare(R! n) where R:= ResidueClassRing(79)]; // _Vincenzo Librandi_, Jan 23 2020
%Y Cf. A010440 (complement), A096013 (row 79).
%K nonn,fini,full,easy
%O 1,1
%A _N. J. A. Sloane_