Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Aug 11 2024 14:41:29
%S 0,4,88,868,4554,8008,45154,89698,452254,4526254,8996998,830333038,
%T 862626268,899969998,4058008504,45032023054,45229592254,89999699998,
%U 405485584504,4503764673054,8187727277818,8999996999998,89178266287198,455467838764554,833066101660338
%N Palindromes of form n(n+3).
%C Also: Palindromes that are the sum of consecutive initial even composites. Sequence 4 + 6 + 8 + 10 + 12 + 14 + ... + z = n. For values of z see A058851. (Comment added by author 12/2000).
%C 9*10^(2n)-3*10^n-2 for n >= 0 are terms. For n > 1, the first (and last digit) of a(n) is either 4 or 8. - _Chai Wah Wu_, Feb 20 2021
%H Chai Wah Wu, <a href="/A028554/b028554.txt">Table of n, a(n) for n = 1..40</a>
%H P. De Geest, <a href="https://www.worldofnumbers.com/consemor.htm">Palindromic Quasipronics</a>
%H P. De Geest, <a href="https://www.worldofnumbers.com/firstpal.htm#sfn5">Palindromic Sums 2</a>
%o (Python)
%o n, m, A028554_list = 4, 0, []
%o while n < 10**12:
%o s = str(m)
%o if s == s[::-1]:
%o A028554_list.append(m)
%o m += n
%o n += 2 # _Chai Wah Wu_, Feb 20 2021
%Y Cf. A028553, A058851.
%K nonn,base
%O 1,2
%A _Patrick De Geest_
%E More terms from _Chai Wah Wu_, Feb 20 2021