Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Dec 13 2013 07:40:59
%S 1,4,50,444,4349,41348,396733,3795912,36350866,348013000,3332060177,
%T 31902067752,305441725601,2924400160544,27999196885618,
%U 268073721835248,2566628109851821,24573761479828684,235277465932911917,2252625667246251996,21567396521342873618
%N Number of perfect matchings in graph P_{2} X C_{3} X P_{n}.
%H Alois P. Heinz, <a href="/A028455/b028455.txt">Table of n, a(n) for n = 0..1000</a>
%H Per Hakan Lundow, <a href="http://www.theophys.kth.se/~phl/Text/1factors.pdf">Computation of matching polynomials and the number of 1-factors in polygraphs</a>, Research report, No 12, 1996, Department of Math., Umea University, Sweden.
%H Per Hakan Lundow, <a href="http://www.theophys.kth.se/~phl/Text/1factors2.ps.gz">Enumeration of matchings in polygraphs</a>, 1998.
%F G.f.: (x^6 +4*x^5 -4*x^4 -16*x^3 +4*x^2 +4*x -1) / (-x^8 -8*x^7 +22*x^6 +60*x^5 -67*x^4 -60*x^3 +22*x^2 +8*x -1). - _Alois P. Heinz_, Dec 09 2013
%K nonn
%O 0,2
%A _Per H. Lundow_