Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Mar 01 2019 08:04:35
%S 14,21,16,24,36,54,81,61,46,69,52,78,117,88,132,198,297,223,167,125,
%T 94,141,106,159,119,89,67,50,75,56,84,126,189,142,213,160,240,360,540,
%U 810,1215,911,683,512,768,1152,1728,2592,3888,5832,8748,13122,19683
%N Iterate the map in A006368 starting at 14.
%H T. D. Noe, <a href="/A028395/b028395.txt">Table of n, a(n) for n = 0..1000</a>
%H J. H. Conway, <a href="http://www.jstor.org/stable/10.4169/amer.math.monthly.120.03.192">On unsettleable arithmetical problems</a>, Amer. Math. Monthly, 120 (2013), 192-198.
%H D. Gale, <a href="http://dx.doi.org/10.1007/978-1-4612-2192-0">Tracking the Automatic Ant And Other Mathematical Explorations</a>, A Collection of Mathematical Entertainments Columns from The Mathematical Intelligencer, Springer, 1998; see p. 16.
%H <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a>
%F a(n+1) = A006368(a(n)).
%t SubstitutionSystem[{n_ :> If[EvenQ[n], 3n/2, Round[3n/4]]}, {14}, 60] // Flatten (* _Jean-François Alcover_, Mar 01 2019 *)
%o (Haskell)
%o a028395 n = a028395_list !! n
%o a028395_list = iterate a006368 14 -- _Reinhard Zumkeller_, Apr 18 2012
%Y Cf. A028393.
%Y Cf. A180853, A180864, A182205; A028398(5) = 14.
%K nonn
%O 0,1
%A _J. H. Conway_