Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Sep 08 2022 08:44:50
%S 5,11,17,29,37,41,53,59,67,71,97,101,127,149,179,191,223,227,251,257,
%T 269,307,311,331,347,419,431,541,557,563,569,587,593,599,641,727,733,
%U 739,809,821,853,929,937,967,1009,1031,1087,1151,1213,1277
%N Good primes (version 2): prime(n) such that prime(n)^2 > prime(n-i)*prime(n+i) for all 1 <= i <= n-1.
%C Selfridge conjectured, and Pomerance proved, that there are infinitely many numbers in this sequence. Pomerance asks if the sequence has density 0. - _Charles R Greathouse IV_, Apr 14 2011
%D Guy, R. K. `Good' Primes and the Prime Number Graph. A14 in Unsolved Problems in Number Theory, 2nd ed. Springer-Verlag, pp. 32-33, 1994.
%H T. D. Noe, <a href="/A028388/b028388.txt">Table of n, a(n) for n = 1..10000</a>
%H Carl Pomerance, <a href="http://www.math.dartmouth.edu/~carlp/PDF/paper19.pdf">The prime number graph</a>, Mathematics of Computation 33:145 (1979), pp. 399-408.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GoodPrime.html">Good Prime</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SelfridgesConjecture.html">Selfridge's Conjecture</a>
%t Module[{nn=300,prs},prs=Prime[Range[2nn]];qprQ[n_]:=Module[{pi= PrimePi[n]}, n^2>Max[Times@@@Thread[{Take[prs,pi-1],Reverse[Take[ prs,{pi+1,2 pi-1}]]}]]];Select[Take[prs,nn],qprQ]] (* _Harvey P. Dale_, May 13 2012 *)
%o (Magma) [NthPrime(n): n in [2..220] | forall{i: i in [1..n-1] | NthPrime(n)^2 gt NthPrime(n-i)*NthPrime(n+i)}]; // _Bruno Berselli_, Oct 23 2012
%o (PARI) is(n)=if(!isprime(n),return(0));my(p=n,q=n,n2=n^2);while(p>2, p=precprime(p-1); q=nextprime(q+1); if(n2<p*q,return(0))); n>2 \\ _Charles R Greathouse IV_, Jul 02 2013
%Y Cf. A046869.
%K nonn
%O 1,1
%A _Eric W. Weisstein_