Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Nov 25 2016 05:27:47
%S 1,1,6,21,48,112,224,390,656,1037,1545,2245,3158,4300,5757,7554,9713,
%T 12339,15463,19111,23409,28392,34092,40654,48119,56523,66032,76691,
%U 88542,101770,116426,132556,150366,169911
%N Molien series for complete weight enumerator of self-dual code over GF(5) containing all-1's vector.
%H G. C. Greubel, <a href="/A028345/b028345.txt">Table of n, a(n) for n = 0..1000</a>
%H E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (<a href="http://neilsloane.com/doc/self.txt">Abstract</a>, <a href="http://neilsloane.com/doc/self.pdf">pdf</a>, <a href="http://neilsloane.com/doc/self.ps">ps</a>).
%H <a href="/index/Mo#Molien">Index entries for Molien series</a>
%F G.f.: -(2*t^80 + 2*t^70 + 15*t^60 + 19*t^50 + 9*t^40 + 9*t^30 + 4*t^20 - t^10 + 1)/( t^100 - 2*t^90 + 3*t^60 - 3*t^40 + 2*t^10 - 1).
%t Take[CoefficientList[Series[(-2*t^80 - 2*t^70 - 15*t^60 - 19*t^50 - 9*t^40 - 9*t^30 - 4*t^20 + t^10 - 1)/(t^100 - 2*t^90 + 3*t^60 - 3*t^40 + 2*t^10 - 1), {t, 0, 10000}], t], {1, -1, 10}] (* _G. C. Greubel_, Nov 25 2016 *)
%K nonn
%O 0,3
%A _N. J. A. Sloane_