login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficient of x^3 in expansion of (x+1)*(x+3)*...*(x+2*n-1).
6

%I #23 Nov 25 2016 05:22:40

%S 1,16,230,3480,57379,1038016,20570444,444647600,10431670821,

%T 264300628944,7198061846898,209814739262856,6520139954328519,

%U 215245451727154944,7524314127912551832,277705505168550027360,10792700030471840300745,440604294676004639627280

%N Coefficient of x^3 in expansion of (x+1)*(x+3)*...*(x+2*n-1).

%C Equals fourth left hand column of A161198 triangle divided by 8. - _Johannes W. Meijer_, Jun 08 2009

%H G. C. Greubel, <a href="/A028340/b028340.txt">Table of n, a(n) for n = 3..400</a>

%F a(n) = Sum_{i=k+1..n} (-1)^(k+1-i)*2^(n-1)*binomial(i-1, k)*s1(n, i) with k = 3, where s1(n, i) are unsigned Stirling numbers of the first kind. - Victor Adamchik (adamchik(AT)ux10.sp.cs.cmu.edu), Jan 23 2001

%F E.g.f.: -(log(1-2*x))^3/( 48*sqrt(1-2*x) ). - _Vladeta Jovovic_, Feb 19 2003

%t Table[Coefficient[Product[x + 2*k - 1, {k, 1, n}], x, 3], {n,3,50}] (* _G. C. Greubel_, Nov 24 2016 *)

%o (PARI) a(n) = polcoeff(prod(k=1, n, x+2*k-1), 3); \\ _Michel Marcus_, Nov 12 2014

%Y Cf. A028338, A161198.

%K nonn

%O 3,2

%A _Bill Gosper_

%E More terms from _Michel Marcus_, Nov 12 2014