login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A028240 Weight distribution of (256,2^16,120) Kerdock code. 1

%I

%S 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,32512,510,32512,0,0,0,0,0,0,0,0,0,0,0,

%T 0,0,0,1

%N Weight distribution of (256,2^16,120) Kerdock code.

%D F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 456.

%H A. R. Hammons, Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, <a href="http://neilsloane.com/doc/linear.txt">The Z_4 linearity of Kerdock, Preparata, Goethals and related codes</a>, IEEE Trans. Inform. Theory, 40 (1994), 301-319.

%e x^256+y^256+510*x^128*y^128+32512*x^120*y^136+32512*y^120*x^136.

%Y Cf. A010032, A028238, A109151.

%K nonn,fini,full

%O 0,16

%A _N. J. A. Sloane_.

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 20:51 EDT 2022. Contains 354092 sequences. (Running on oeis4.)