%I #14 Sep 28 2023 11:39:47
%S 1,38,913,17738,304549,4824806,72271081,1039149506,14486436877,
%T 197162419454,2632865400529,34623882428954,449653998040885,
%U 5779288950415382,73637791767193657,931419802216938482
%N Expansion of 1/((1-6x)(1-9x)(1-11x)(1-12x)).
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (38, -531, 3222, -7128).
%F From _Vincenzo Librandi_, Mar 14 2011: (Start)
%F a(n) = 23*a(n-1) - 132*a(n-2) + 3^n*(3^(n+1) - 2^(n+1)), a(0)=1, a(1)=38.
%F a(n) = 38*a(n-1) - 531*a(n-2) + 3222*a(n-3) - 7128*a(n-4), a(0)=1, a(1)=38, a(2)=913, a(3)=17738. (End)
%F a(n) = (5*12^(n+3) - 9*11^(n+3) + 5*9^(n+3) - 6^(n+3))/90. - _Yahia Kahloune_, Jun 12 2013
%K nonn
%O 0,2
%A _N. J. A. Sloane_