Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Sep 08 2022 08:44:50
%S 1,36,820,15120,246736,3721536,53174080,730794240,9758653696,
%T 127501710336,1638112752640,20771546664960,260668843872256,
%U 3244288806567936,40111449573376000,493276560759521280,6039827824481468416,73691981266726158336,896516001844367196160
%N Expansion of 1/((1-6x)(1-8x)(1-10x)(1-12x)).
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (36,-476,2736,-5760).
%F a(n) = 22*a(n-1) - 120*a(n-2) + 2^n*(4^(n+1) - 3^(n+1)), n>=2. - _Vincenzo Librandi_, Mar 14 2011
%F a(n) = 36*a(n-1) - 476*a(n-2) + 2736*a(n-3) - 5760*a(n-4). - _Vincenzo Librandi_, Mar 14 2011
%F a(n) = -125*10^n/2 -9*6^n/2 +4*8^(n+1)+3*12^(n+1). - _R. J. Mathar_, Mar 15 2011
%p A028214:=n->-125*10^n/2 -9*6^n/2 +4*8^(n+1)+3*12^(n+1): seq(A028214(n), n=0..20); # _Wesley Ivan Hurt_, Oct 23 2014
%t CoefficientList[Series[1/((1 - 6 x) (1 - 8 x) (1 - 10 x) (1 - 12 x)), {x, 0, 20}], x] (* _Wesley Ivan Hurt_, Oct 23 2014 *)
%o (Magma) [-125*10^n/2 -9*6^n/2 +4*8^(n+1)+3*12^(n+1) : n in [0..20]]; // _Wesley Ivan Hurt_, Oct 23 2014
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_.
%E More terms from _Wesley Ivan Hurt_, Oct 23 2014