%I #15 Aug 31 2018 17:23:48
%S 1,35,773,13783,216909,3146703,43129381,567128471,7227535997,
%T 89900761951,1097000610069,13181200344039,156403487677165,
%U 1836701044549679,21383695384607237,247159815109688887
%N Expansion of 1/((1-6x)(1-8x)(1-10x)(1-11x)).
%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (35,-452,2548,-5280).
%F From _Vincenzo Librandi_, Mar 14 2011: (Start)
%F a(n) = 21*a(n-1) - 110*a(n-2) + 2^n*(4^(n+1) - 3^(n+1)), n >= 2.
%F a(n) = 35*a(n-1) - 452*a(n-2) + 2548*a(n-3) - 5280*a(n-4), n >= 4. (End)
%F a(n) = 11^(n+3)/15 + 2*8^(n+2)/3 - 125*10^n - 27*6^n/5. - _R. J. Mathar_, Mar 15 2011
%t CoefficientList[Series[1/((1-6x)(1-8x)(1-10x)(1-11x)),{x,0,30}],x] (* or *) LinearRecurrence[{35,-452,2548,-5280},{1,35,773,13783},30] (* _Harvey P. Dale_, Aug 06 2013 *)
%K nonn
%O 0,2
%A _N. J. A. Sloane_