login
Expansion of 1/((1-4x)(1-6x)(1-9x)(1-11x)).
0

%I #11 Jul 30 2015 22:53:34

%S 1,30,577,9090,128053,1682430,21103129,256309050,3041879005,

%T 35492692950,408887138881,4665046178130,52827593605957,

%U 594751348348590,6665329755603433,74427620033028330,828693209595614509

%N Expansion of 1/((1-4x)(1-6x)(1-9x)(1-11x)).

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (30, -323, 1470, -2376).

%F a(0)=1, a(1)=30, a(2)=577, a(3)=9090, a(n)=30*a(n-1)-323*a(n-2)+ 1470*a(n-3)- 2376*a(n-4). - _Harvey P. Dale_, Oct 22 2012

%F a(n)=(3*11^(n+3)-7*9^(n+3)+7*6^(n+3)-3*4^(n+3))/210. [_Yahia Kahloune_, Jun 03 2013]

%t CoefficientList[Series[1/((1-4x)(1-6x)(1-9x)(1-11x)),{x,0,30}],x] (* or *) LinearRecurrence[{30,-323,1470,-2376},{1,30,577,9090},20] (* _Harvey P. Dale_, Oct 22 2012 *)

%K nonn

%O 0,2

%A _N. J. A. Sloane_.