%I #10 Jun 19 2015 11:19:41
%S 1,29,544,8414,116935,1521023,18936478,228705968,2702760709,
%T 31433459057,361216744252,4113147855362,46506852459523,
%U 522961531303331,5855208956119066,65331927878971796,726978513100416577
%N Expansion of 1/((1-3x)(1-6x)(1-9x)(1-11x)).
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (29,-297,1251,-1782).
%F a(n)=(9*11^(n+3)-20*9^(n+3)+16*6^(n+3)-5*3^(n+3))/720. [_Yahia Kahloune_, May 27 2013].
%F G.f.: 1/(1-29*x+297*x^2-1251*x^3+1782*x^4). - _Harvey P. Dale_, Jun 16 2015
%F a(0)=1, a(1)=29, a(2)=544, a(3)=8414, a(n)=29*a(n-1)-297*a(n-2)+ 1251*a(n-3)- 1782*a(n-4). - _Harvey P. Dale_, Jun 16 2015
%t CoefficientList[Series[1/((1-3x)(1-6x)(1-9x)(1-11x)),{x,0,30}],x] (* or *) LinearRecurrence[{29,-297,1251,-1782},{1,29,544,8414},30] (* _Harvey P. Dale_, Jun 16 2015 *)
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_.