login
Expansion of 1/((1-3x)(1-4x)(1-5x)(1-10x)).
0

%I #11 Jul 30 2015 22:45:43

%S 1,22,317,3830,42381,447582,4608877,46813030,471994061,4740248942,

%T 47508048237,475624522230,4759030936141,47604501583102,

%U 476117036332397,4761534717751430,47617186000380621,476181122450194062

%N Expansion of 1/((1-3x)(1-4x)(1-5x)(1-10x)).

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (22, -167, 530, -600).

%F a(0)=1, a(1)=22, a(2)=317, a(3)=3830, a(n)=22*a(n-1)-167*a(n-2)+ 530*a(n-3)- 600*a(n-4). [_Harvey P. Dale_, May 08 2012]

%F a(n)=(10^(n+3)-21*5^(n+3)+35*4^(n+3)-15*3^(n+3))/210. [_Yahia Kahloune_, May 30 2013]

%t CoefficientList[Series[1/((1-3x)(1-4x)(1-5x)(1-10x)),{x,0,30}],x] (* or *) LinearRecurrence[{22,-167,530,-600},{1,22,317,3830},30] (* _Harvey P. Dale_, May 08 2012 *)

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_.