Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 May 28 2015 03:39:07
%S 1,0,1,3,6,13,24,49,91,181,334,632,1163,2138,3880,7006,12531,22279,
%T 39369,69078,120597,209282,361405,620829,1061687,1807014,3062642,
%U 5168784,8688820,14549659,24274226,40353748,66854518,110391391,181695436,298129605,487706902
%N Expansion of Product(1+q^m)^(m(m-1)/2); m=1..inf.
%H Alois P. Heinz, <a href="/A027999/b027999.txt">Table of n, a(n) for n = 0..1000</a>
%H Vaclav Kotesovec, <a href="/A027999/a027999.jpg">Graph - the asymptotic ratio</a>
%F a(n) ~ 7^(1/8) / (2^(47/24) * 15^(1/8) * n^(5/8)) * exp(-2025 * Zeta(3)^3 / (98*Pi^8) - 135*(15/7)^(1/4) * Zeta(3)^2 / (28*Pi^5) * n^(1/4) - 3*sqrt(15/7) * Zeta(3) / (2*Pi^2) * sqrt(n) + 2*(7/15)^(1/4) * Pi/3 * n^(3/4)), where Zeta(3) = A002117. - _Vaclav Kotesovec_, May 27 2015
%p b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
%p add(binomial(binomial(i, 2), j)*b(n-i*j, i-1), j=0..n/i)))
%p end:
%p a:= n-> b(n$2):
%p seq(a(n), n=0..50); # _Alois P. Heinz_, Aug 03 2013
%t b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[Binomial[i, 2], j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* _Jean-François Alcover_, Oct 13 2014, after _Alois P. Heinz_ *)
%Y Cf. A027998, A028377, A258349, A258341, A258344.
%K nonn
%O 0,4
%A _N. J. A. Sloane_.