login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A027953 a(0)=1, a(n) = Fibonacci(2n+4) - (2n+3). 1
1, 3, 14, 46, 133, 364, 972, 2567, 6746, 17690, 46345, 121368, 317784, 832011, 2178278, 5702854, 14930317, 39088132, 102334116, 267914255, 701408690, 1836311858, 4807526929, 12586268976, 32951280048, 86267571219, 225851433662 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (5,-8,5,-1).

FORMULA

a(n) = T(2n+1, n+1), T given by A027948.

G.f.: (1-2*x+7*x^2-5*x^3+x^4)/((1-3*x+x^2)*(1-x)^2). - Vladeta Jovovic, Mar 27 2003

a(n) = Sum_{j=0..n} binomial(2*n-j+1, j+2), with a(0)=1. - G. C. Greubel, Sep 29 2019

MAPLE

with(combinat); seq(`if`(n=0, 1, fibonacci(2*n+4) -(3 +2*n)), n=0..40); # G. C. Greubel, Sep 29 2019

MATHEMATICA

Join[{1}, Table[Fibonacci[2n+4]-(2n+3), {n, 30}]] (* or *) LinearRecurrence[ {5, -8, 5, -1}, {1, 3, 14, 46, 133}, 30] (* Harvey P. Dale, Oct 04 2017 *)

PROG

(PARI) vector(40, n, my(m=n-1); if(m==0, 1, fibonacci(2*m+4) -(3 +2*m)) ) \\ G. C. Greubel, Sep 29 2019

(MAGMA) [1] cat [Fibonacci(2*n+4) -(3 +2*n): n in [1..40]]; // G. C. Greubel, Sep 29 2019

(Sage) [1]+[fibonacci(2*n+4) -(3 +2*n) for n in (1..40)] # G. C. Greubel, Sep 29 2019

(GAP) Concatenation([1], List([1..40], n-> Fibonacci(2*n+4) -(3 +2*n) )); # G. C. Greubel, Sep 29 2019

CROSSREFS

Cf. A000045, A027948.

Sequence in context: A032055 A180785 A123350 * A264501 A104196 A281869

Adjacent sequences:  A027950 A027951 A027952 * A027954 A027955 A027956

KEYWORD

nonn

AUTHOR

Clark Kimberling

EXTENSIONS

More terms from Vladeta Jovovic, Mar 27 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 16:18 EDT 2022. Contains 356215 sequences. (Running on oeis4.)