login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = T(2*n, n), T given by A027907.
9

%I #49 May 01 2024 09:01:20

%S 1,2,10,50,266,1452,8074,45474,258570,1481108,8533660,49402850,

%T 287134346,1674425300,9792273690,57407789550,337281021450,

%U 1985342102964,11706001102180,69124774458092,408737856117916,2419833655003752,14341910428953018,85087759173024870

%N a(n) = T(2*n, n), T given by A027907.

%C Central terms of the triangle in A111808. - _Reinhard Zumkeller_, Aug 17 2005

%C Number of paths of semilength n starting at (0,0) and ending on the X-axis using steps (1,1), (1,-1) and (1,3). - _David Scambler_, Jun 21 2013

%H Seiichi Manyama, <a href="/A027908/b027908.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: -(g^2+g+1)/(3*g^2+g-1) where g = x times the g.f. of A143927. - _Mark van Hoeij_, Nov 16 2011

%F a(n) = GegenbauerC(n, -2*n, -1/2). - _Peter Luschny_, May 09 2016

%F From _Peter Bala_, Jan 26 2020: (Start)

%F a(n) = [x^(2*n)](1 + x^2 + x^4)^(2*n).

%F a(n) = Sum_{k = 0..floor(n/2)} C(2*n, n-k)*C(n-k, k).

%F a(n) = C(2*n,n) * hypergeom([-n/2, (1 - n)/2], [n + 1], 4)

%F Conjectural: a(n*p^k) == a(n*p^(k-1)) ( mod p^(2*k) ) for all primes p >= 5 and positive integers n and k. (End)

%F From _Peter Bala_, Aug 03 2023: (Start)

%F P-recursive: 3*n*(13*n - 17)*(3*n - 1)*(3*n - 2)*a(n) = 2*(2*n - 1)*(455*n^3 - 1050*n^2 + 691*n - 120)*a(n-1) + 36*(n - 1)*(13*n - 4)*(2*n - 1)*(2*n - 3)*a(n-2) with a(0) = 1 and a(1) = 2.

%F exp(Sum_{n >= 0} a(n)*x^n/n) = 1 + 2*x + 7*x^2 + 28*x^3 + 123*x^4 + ... is the g.f. of A143927.

%F a(n) = 2*A344396(n-1) for n >= 1. (End)

%p ogf := series( RootOf( (144*x^2+140*x-27)*g^4+(18-12*x)*g^2+8*g+1, g), x=0, 20); # _Mark van Hoeij_, Nov 16 2011

%p a := n -> simplify(GegenbauerC(n, -2*n, -1/2)):

%p seq(a(n), n=0..23); # _Peter Luschny_, May 09 2016

%t Table[Binomial[4 n, n] Hypergeometric2F1[-3 n, -n, 1/2 - 2 n, 1/4], {n, 0, 20}] (* or *) Table[GegenbauerC[3 n, -2 n, -1/2] + KroneckerDelta[n], {n, 0, 20}] (* _Vladimir Reshetnikov_, May 07 2016 *)

%o (Maxima) makelist(ultraspherical(n,-2*n,-1/2),n,0,12); /* _Emanuele Munarini_, Oct 18 2016 */

%Y Cf. A027907, A027913, A143927, A344396, A370159, A370160.

%K nonn

%O 0,2

%A _Clark Kimberling_