login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Product_{i=1..n} (11^i - 1).
17

%I #42 May 07 2023 01:22:37

%S 1,10,1200,1596000,23365440000,3763004112000000,

%T 6666387564654720000000,129909027758312519942400000000,

%U 27847153692160782464830528512000000000,65662131721505488121539650946349537280000000000

%N a(n) = Product_{i=1..n} (11^i - 1).

%C It appears that the number of trailing zeros in a(n) is A191610(n). - _Robert Israel_, Nov 24 2015

%H Vincenzo Librandi, <a href="/A027879/b027879.txt">Table of n, a(n) for n = 0..43</a>

%F 10^n|a(n) for n>=0; 12*(10)^(n)|a(n) n>=2. - _G. C. Greubel_, Nov 21 2015

%F a(n) ~ c * 11^(n*(n+1)/2), where c = Product_{k>=1} (1-1/11^k) = 0.900832706809715279949862694760647744762491192216... . - _Vaclav Kotesovec_, Nov 21 2015

%F E.g.f. E(x) satisfies E'(x) = 11 E(11 x) - E(x). - _Robert Israel_, Nov 24 2015

%F Equals 11^(binomial(n+1,2))*(1/11;1/11)_{n}, where (a;q)_{n} is the q-Pochhammer symbol. - _G. C. Greubel_, Dec 24 2015

%F G.f.: Sum_{n>=0} 11^(n*(n+1)/2)*x^n / Product_{k=0..n} (1 + 11^k*x). - _Ilya Gutkovskiy_, May 22 2017

%F Sum_{n>=0} (-1)^n/a(n) = A132267. - _Amiram Eldar_, May 07 2023

%p seq(mul(11^i-1,i=1..n),n=0..20; # _Robert Israel_, Nov 24 2015

%t FoldList[Times,1,11^Range[10]-1] (* _Harvey P. Dale_, Aug 13 2013 *)

%t Abs@QPochhammer[11, 11, Range[0, 40]] (* _G. C. Greubel_, Nov 24 2015 *)

%o (PARI) a(n)=prod(i=1,n,11^i-1) \\ _Anders Hellström_, Nov 21 2015

%o (Magma) [1] cat [&*[11^k-1: k in [1..n]]: n in [1..11]]; // _Vincenzo Librandi_, Dec 24 2015

%Y Cf. A005329 (q=2), A027871 (q=3), A027637 (q=4), A027872 (q=5), A027873 (q=6), A027875 (q=7), A027876 (q=8), A027877 (q=9), A027878 (q=10), A027880 (q=12).

%Y Cf. A132267, A191610.

%K nonn

%O 0,2

%A _N. J. A. Sloane_