login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 21*(n+1)*binomial(n+4,9).
1

%I #30 Feb 03 2022 09:42:13

%S 126,1470,9240,41580,150150,462462,1261260,3123120,7147140,15315300,

%T 31039008,59961720,111105540,198470580,343219800,576609264,943854450,

%U 1509157650,2362159800,3626122500,5468192730,8112154050,11854124100,17081719200,24297273000

%N a(n) = 21*(n+1)*binomial(n+4,9).

%C Number of 14-subsequences of [ 1, n ] with just 4 contiguous pairs.

%H T. D. Noe, <a href="/A027805/b027805.txt">Table of n, a(n) for n = 5..1000</a>

%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).

%F G.f.: 42*(3+2x)*x^5/(1-x)^11.

%F a(n) = C(n+1, 6)*C(n+4, 4). - _Zerinvary Lajos_, May 25 2005; corrected by _R. J. Mathar_, Feb 13 2016

%F From _Amiram Eldar_, Feb 03 2022: (Start)

%F Sum_{n>=5} 1/a(n) = 1160923/29400 - 4*Pi^2.

%F Sum_{n>=5} (-1)^(n+1)/a(n) = 2*Pi^2 + 1536*log(2)/35 - 491481/9800. (End)

%t Table[21(n+1)Binomial[n+4,9],{n,5,30}] (* _Harvey P. Dale_, Sep 19 2011 *)

%o (PARI) a(n)=21*(n+1)*binomial(n+4,9) \\ _Charles R Greathouse IV_, Sep 19 2011

%K nonn,easy

%O 5,1

%A Thi Ngoc Dinh (via _R. K. Guy_)