OFFSET
3,1
COMMENTS
Number of 8-subsequences of [ 1, n ] with just 2 contiguous pairs.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 3..10000
Ronald Orozco López, Solution of the Differential Equation y^(k)= e^(a*y), Special Values of Bell Polynomials and (k,a)-Autonomous Coefficients, Journal of Integer Sequences, Vol. 24 (2021), Article 21.8.6; ResearchGate link.
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
FORMULA
G.f.: 5*x^3*(2+x)/(1-x)^7.
a(n) = binomial(n+1, 4)*binomial(n+2, 2). - Zerinvary Lajos, Apr 28 2005, corrected by R. J. Mathar, Feb 13 2016
From Amiram Eldar, Feb 01 2022: (Start)
Sum_{n>=3} 1/a(n) = 239/18 - 4*Pi^2/3.
Sum_{n>=3} (-1)^(n+1)/a(n) = 2*Pi^2/3 + 64*log(2)/3 - 383/18. (End)
MATHEMATICA
DeleteCases[CoefficientList[Series[5 x^3*(2 + x)/(1 - x)^7, {x, 0, 24}], x], 0] (* Michael De Vlieger, Jul 16 2021 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Thi Ngoc Dinh (via R. K. Guy)
STATUS
approved