login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (n+1)*binomial(n+1,16).
2

%I #25 Jan 30 2022 04:23:32

%S 16,289,2754,18411,96900,427329,1641486,5638611,17651304,51074375,

%T 138105110,352023165,851809140,1968053535,4362680250,9316746045,

%U 19234572480,38504502630,74934688620,142097513250,263083395960,476403662790,845119028340,1470739178610

%N a(n) = (n+1)*binomial(n+1,16).

%C Number of 18-subsequences of [ 1, n ] with just 1 contiguous pair.

%H T. D. Noe, <a href="/A027776/b027776.txt">Table of n, a(n) for n = 15..1000</a>

%H Luis Manuel Rivera, <a href="http://arxiv.org/abs/1406.3081">Integer sequences and k-commuting permutations</a>, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.

%H <a href="/index/Rec#order_18">Index entries for linear recurrences with constant coefficients</a>, signature (18,-153,816,-3060,8568,-18564,31824,-43758,48620,-43758,31824,-18564,8568,-3060,816,-153,18,-1).

%F G.f.: (16+x)*x^15/(1-x)^18.

%F From _Amiram Eldar_, Jan 30 2022: (Start)

%F Sum_{n>=15} 1/a(n) = 107074439839/4058104050 - 8*Pi^2/3.

%F Sum_{n>=15} (-1)^(n+1)/a(n) = 4*Pi^2/3 + 684654592*log(2)/9009 - 30545942365399/579729150. (End)

%t Table[(n + 1) Binomial[n + 1, 16], {n, 15, 100}] (* _T. D. Noe_, Mar 28 2012 *)

%K nonn,easy

%O 15,1

%A Thi Ngoc Dinh (via _R. K. Guy_)

%E Incorrect formula deleted. - _R. J. Mathar_, Feb 13 2016