Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Feb 22 2022 15:30:35
%S 6,30,42,30,66,2730,6,510,798,330,138,2730,6,870,14322,510,6,1919190,
%T 6,13530,1806,690,282,46410,66,1590,798,870,354,56786730,6,510,64722,
%U 30,4686,140100870,6,30,3318,230010,498,3404310,6,61410,272118,1410,6,4501770
%N Denominator of Sum_{p prime, p-1 divides 2*n} 1/p.
%C From the von Staudt-Clausen theorem, denominator(B_2n) = product of primes p such that (p-1)|2n.
%C Same as A002445.
%D G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Th. 118.
%D H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1.
%H R. Mestrovic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Mestrovic/mes4.html">On a Congruence Modulo n^3 Involving Two Consecutive Sums of Powers</a>, Journal of Integer Sequences, Vol. 17 (2014), 14.8.4.
%H <a href="/index/Be#Bernoulli">Index entries for sequences related to Bernoulli numbers.</a>
%F a(n) = A002445(n). [_Joerg Arndt_, May 06 2012]
%F a(n) = A027760(2*n). - _Ridouane Oudra_, Feb 22 2022
%o (PARI)
%o a(n)=
%o {
%o my(s=0);
%o forprime (p=2, 2*n+1, if( (2*n)%(p-1)==0, s+=1/p ) );
%o return( denominator(s) );
%o }
%o /* _Joerg Arndt_, May 06 2012 */
%Y Cf. A027761, A006954.
%Y Cf. A027760.
%K nonn,frac
%O 1,1
%A _N. J. A. Sloane_