login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of binary sequences of length n with an even number of ones, at least two of the ones being contiguous.
1

%I #28 Sep 08 2022 08:44:49

%S 0,1,2,4,9,21,47,101,212,440,907,1859,3791,7699,15586,31476,63445,

%T 127689,256671,515433,1034248,2073968,4156791,8327911,16679007,

%U 33395527,66851750,133801708,267762321,535781757,1071979535

%N Number of binary sequences of length n with an even number of ones, at least two of the ones being contiguous.

%H Vincenzo Librandi, <a href="/A027711/b027711.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (4,-5,2,1,-2).

%F G.f.: x^2*(1 - 2*x + x^2 + x^3)/((2*x-1)*(x^2 + x - 1)*(x^2 - x + 1)).

%F a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3) + a(n-4) - 2*a(n-5).

%t LinearRecurrence[{4,-5,2,1,-2},{0,1,2,4,9},40] (* _Vincenzo Librandi_, Jun 20 2012 *)

%t CoefficientList[Series[x^2*(1-2*x+x^2+x^3)/((2*x-1)*(x^2+x-1)*(x^2-x+1)), {x, 0, 50}], x] (* _G. C. Greubel_, Jun 10 2017 *)

%o (Magma) I:=[0, 1, 2, 4, 9]; [n le 5 select I[n] else 4*Self(n-1)-5*Self(n-2)+2*Self(n-3)+Self(n-4)-2*Self(n-5): n in [1..40]]; // _Vincenzo Librandi_, Jun 20 2012

%o (PARI) x='x+O('x^50); Vec(x^2*(1-2*x+x^2+x^3)/((2*x-1)*(x^2+x-1)*(x^2-x+1))) \\ _G. C. Greubel_, Jun 10 207

%K nonn,easy

%O 1,3

%A _R. K. Guy_

%E Typo in denominator of g.f. corrected by _R. J. Mathar_, Sep 03 2010