Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Aug 04 2022 05:14:35
%S 1,16,1296,3456,3240000,144000,1555848000,59270400,5000940000,1587600,
%T 9762501672000,11269843200,221794053611130000,39390663312000,
%U 5849513501832000,519437318400,407131014322092060000,1063331477208000
%N Denominators of poly-Bernoulli numbers B_n^(k) with k=4.
%H Seiichi Manyama, <a href="/A027648/b027648.txt">Table of n, a(n) for n = 0..807</a>
%H K. Imatomi, M. Kaneko, and E. Takeda, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Kaneko/kaneko2.html">Multi-Poly-Bernoulli Numbers and Finite Multiple Zeta Values</a>, J. Int. Seq. 17 (2014) # 14.4.5
%H M. Kaneko, <a href="https://www.emis.de/journals/JTNB/1997-1/kaneko.ps">Poly-Bernoulli numbers</a>
%H Masanobu Kaneko, <a href="https://doi.org/10.5802/jtnb.197">Poly-Bernoulli numbers</a>, Journal de théorie des nombres de Bordeaux, 9 no. 1 (1997), Pages 221-228.
%H <a href="/index/Be#Bernoulli">Index entries for sequences related to Bernoulli numbers</a>.
%F a(n) = denominator of Sum_{j=0..n} (-1)^(n+j) * j! * Stirling2(n, j) * (j+1)^(-k), for k = 4.
%p a:= (n, k) -> denom( (-1)^n*add((-1)^m*m!*Stirling2(n, m)/(m+1)^k, m = 0..n) );
%p seq(a(n, 4), n = 0..30);
%t With[{k = 4}, Table[Denominator@ Sum[((-1)^(m + n))*m!*StirlingS2[n, m]*(m + 1)^(-k), {m, 0, n}], {n, 0, 17}]] (* _Michael De Vlieger_, Mar 18 2017 *)
%o (Magma)
%o A027648:= func< n,k | Denominator( (&+[(-1)^(j+n)*Factorial(j)*StirlingSecond(n, j)/(j+1)^k: j in [0..n]]) ) >;
%o [A027648(n,4): n in [0..20]]; // _G. C. Greubel_, Aug 02 2022
%o (SageMath)
%o def A027648(n,k): return denominator( sum((-1)^(n+j)*factorial(j)*stirling_number2(n,j)/(j+1)^k for j in (0..n)) )
%o [A027648(n,4) for n in (0..20)] # _G. C. Greubel_, Aug 02 2022
%Y Cf. A027641, A027642, A027643, A027644, A027645, A027646, A027647, A027649, A027650, A027651.
%K nonn,frac,easy
%O 0,2
%A _N. J. A. Sloane_