login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Sequence satisfies T^2(a)=a, where T is defined below.
1

%I #11 May 07 2017 22:40:35

%S 1,2,2,4,4,7,8,12,13,18,21,28,32,41,47,59,67,84,95,116,130,158,177,

%T 211,237,279,312,364,408,471,525,603,671,766,849,966,1067,1206,1330,

%U 1498,1649,1846,2030,2264,2484,2759,3024,3348,3659,4041,4409,4855,5287,5809

%N Sequence satisfies T^2(a)=a, where T is defined below.

%C T(a) is given by A027590. [From _Max Alekseyev_, Feb 20 2010]

%D S. Viswanath (student, Dept. Math, Indian Inst. Technology, Kanpur) A Note on Partition Eigensequences, preprint, Nov 15 1996.

%H M. Bernstein and N. J. A. Sloane, <a href="http://arXiv.org/abs/math.CO/0205301">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]

%H M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]

%F Define T:a->b by: given a1<=a2<=..., let b(n) = number of ways of partitioning n into parts from a1, a2, ... such that parts = 0 mod 3 do not occur more than once.

%K nonn,eigen

%O 0,2

%A _N. J. A. Sloane_.

%E More terms from _Max Alekseyev_, Feb 20 2010