%I #12 Nov 09 2019 21:14:17
%S 1,2,3,3,5,7,8,12,14,17,23,26,33,40,46,56,66,76,91,105,121,141,161,
%T 184,212,241,273,312,349,396,447,499,563,628,699,784,869,966,1075,
%U 1185,1314,1450,1597,1761,1937,2125,2334,2556,2794,3060,3339,3642,3974,4321
%N Sequence satisfies T^2(a)=a, where T is defined below.
%D S. Viswanath (student, Dept. Math, Indian Inst. Technology, Kanpur) A Note on Partition Eigensequences, preprint, Nov 15 1996.
%H M. Bernstein and N. J. A. Sloane, <a href="http://arXiv.org/abs/math.CO/0205301">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
%H M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
%F Define T:a->b by: given a1<=a2<=..., let b(n) = number of ways of partitioning n into parts from a1, a2, ... such that even parts do not occur more than once.
%K nonn,eigen
%O 0,2
%A _N. J. A. Sloane_.
%E More terms from _Sean A. Irvine_, Nov 09 2019