login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 4-unbalanced strings of length n (=2^n-A027559(n)).
1

%I #32 Oct 12 2019 15:55:01

%S 0,0,0,0,0,2,6,22,56,152,356,858,1914,4334,9372,20440,43280,92114,

%T 192182,402246,830328,1717496,3517668,7214218,14689994,29938526,

%U 60697148,123127224,248807472,502963778,1013829414,2044098166

%N Number of 4-unbalanced strings of length n (=2^n-A027559(n)).

%C a(n) is also the number of different ways to fold down a folding yardstick with n sticks (stick length is one) to form an equilateral pentagon with side length one. - _Frank Hollstein_, May 01 2019

%H Vincenzo Librandi, <a href="/A027561/b027561.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (3,2,-11,3,6).

%F For n>0, a(n) = 2*Fibonacci(n+3) + 2^n + [5(-1)^n - 19]*3^[n/2-1]. - _Ralf Stephan_, May 13 2004

%F G.f.: 2*x^5/((1-2*x)*(1-x-x^2)*(1-3*x^2)). [_Colin Barker_, Sep 20 2012]

%t CoefficientList[Series[2 x^5/((1 - 2 x) (1 - x - x^2) (1 - 3 x^2)), {x, 0, 40}], x] (* _Vincenzo Librandi_, Oct 18 2013 *)

%t LinearRecurrence[{3,2,-11,3,6},{0,0,0,0,0,2},40] (* _Harvey P. Dale_, Oct 12 2019 *)

%Y Cf. A027559.

%K nonn,easy

%O 0,6

%A _R. K. Guy_, _David Callan_