|
|
A027356
|
|
Array read by rows: T(n,k) = number of partitions of n into distinct odd parts in which k is the greatest part, for k=1,2,...,n, n>=1.
|
|
6
|
|
|
1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,145
|
|
COMMENTS
|
First T(n,k) not 0 or 1 is T(17,9)=2, which counts 1+7+9 and 3+5+9. Row sums: A000700.
|
|
LINKS
|
|
|
FORMULA
|
T(n, 1)=0 for all n; T(n, n)=1 for all odd n>1; and for n>=3, T(n, k)=0 if k is even, else T(n, k)=Sum{T(n-k, i): i=1, 2, ..., n-1} for k=2, 3, ..., n-1.
|
|
EXAMPLE
|
First 5 rows:
1
0 0
0 0 1
0 0 1 0
0 0 0 0 1
Row 40 with even-numbered terms deleted:
0 0 0 0 0 0 2 5 6 7 6 5 4 3 2 1 1 1 1;
E.g. final 2 counts these two partitions: 9+31 and 1+3+5+31.
|
|
MAPLE
|
b:= proc(n, i) option remember; `if`(n>i^2, 0, `if`(n=0, 1,
b(n, i-1) +(p-> `if`(p>n, 0, b(n-p, i-1)))((2*i-1))))
end:
T:= (n, k)-> `if`(k::even, 0, b(n-k, (k-1)/2)):
|
|
MATHEMATICA
|
b[n_, i_] := b[n, i] = If[n > i^2, 0, If[n == 0, 1, b[n, i - 1] + Function[p, If[p > n, 0, b[n - p, i - 1]]][2i - 1]]];
T [n_, k_] := If[EvenQ[k], 0, b[n - k, (k - 1)/2]];
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|