login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n that do not contain 3 as a part.
5

%I #15 Nov 04 2016 12:04:40

%S 1,1,2,2,4,5,8,10,15,19,27,34,47,59,79,99,130,162,209,259,330,407,512,

%T 628,783,956,1181,1435,1760,2129,2594,3124,3784,4539,5468,6534,7834,

%U 9327,11132,13208,15701,18568,21989,25923,30592,35960,42297,49579,58139,67967

%N Number of partitions of n that do not contain 3 as a part.

%C a(n) is also the number of partitions of n with less than three 1's. - _Geoffrey Critzer_, Jun 20 2014

%F G.f.: (1-x^3) Product_{m>0} 1/(1-x^m).

%F a(n) = A000041(n) - A000041(n-3).

%F a(n) ~ Pi * exp(sqrt(2*n/3)*Pi) / (4*sqrt(2)*n^(3/2)) * (1 - (3*sqrt(3/2)/Pi + Pi/(24*sqrt(6)) + 3*Pi/(2*sqrt(6)))/sqrt(n) + (37/8 + 9/(2*Pi^2) + 1801*Pi^2/6912)/n). - _Vaclav Kotesovec_, Nov 04 2016

%t nn=49;CoefficientList[Series[(1-x^3)Product[1/(1-x^i),{i,1,nn}],{x,0,nn}],x] (* _Geoffrey Critzer_, Jun 20 2014 *)

%o (PARI) a(n)=if(n<0,0,polcoeff((1-x^3)/eta(x+x*O(x^n)),n))

%Y Cf. A000041, A027336, A027338.

%Y Column k=0 of A263232.

%Y Column 3 of A175788.

%K nonn

%O 0,3

%A _Clark Kimberling_