login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027319
a(n) = Sum_{k=0..m} (k+1) * A026082(n, k), where 0 <= k <= m, m=n for n=0,1,2,3; m=2n for n >= 4.
2
1, 3, 8, 20, 120, 432, 1512, 5184, 17496, 58320, 192456, 629856, 2047032, 6613488, 21257640, 68024448, 216827928, 688747536, 2181033864, 6887475360, 21695547384, 68186006064, 213856109928, 669462604992, 2092070640600, 6527260398672, 20334926626632
OFFSET
0,2
COMMENTS
Or, a(n) = Sum_{k=0..m} (k+1)*T(n,m-k), m=n for n=0,1,2,3; m=2n for n >= 4; T given by A026082.
FORMULA
For n>3, a(n) = 8*(n+1)*3^(n-3).
From Colin Barker, Feb 17 2016: (Start)
a(n) = 6*a(n-1) - 9*a(n-2) for n>5.
G.f.: (1 - 3*x - x^2 - x^3 + 72*x^4 - 108*x^5) / (1-3*x)^2.
(End)
MATHEMATICA
CoefficientList[Series[(1 - 3 x - x^2 - x^3 + 72 x^4 - 108 x^5)/(1 - 3 x)^2, {x, 0, 26}], x] (* Michael De Vlieger, Feb 17 2016 *)
PROG
(PARI) Vec((1-3*x-x^2-x^3+72*x^4-108*x^5)/(1-3*x)^2 + O(x^30)) \\ Colin Barker, Feb 17 2016
CROSSREFS
Sequence in context: A148768 A110861 A027320 * A297973 A291176 A066212
KEYWORD
nonn,easy
EXTENSIONS
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 05 2007
STATUS
approved