Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Dec 15 2021 07:13:42
%S 5,28,167,1024,6359,39759,249699,1573524,9943905,62994733,399936573,
%T 2543992514,16210331727,103453402718,661164765879,4230874777682,
%U 27105456280491,173838468040879,1115987495619427,7170725839251598,46113396476943241,296773029762031990
%N a(n) = Sum_{k=0..2*n-2} T(n,k) * T(n,k+2), with T given by A026584.
%H G. C. Greubel, <a href="/A027284/b027284.txt">Table of n, a(n) for n = 2..1000</a>
%F a(n) = Sum_{k=0..2*n-2} A026584(n,k) * A026584(n,k+2).
%t T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k] ]]]; (* T = A026584 *)
%t a[n_]:= a[n]= Sum[T[n, k]*T[n, k+2], {k, 0, 2*n-2}];
%t Table[a[n], {n, 2, 40}] (* _G. C. Greubel_, Dec 15 2021 *)
%o (Sage)
%o @CachedFunction
%o def T(n, k): # T = A026584
%o if (k==0 or k==2*n): return 1
%o elif (k==1 or k==2*n-1): return (n//2)
%o else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
%o @CachedFunction
%o def A027284(n): return sum(T(n,j)*T(n, j+2) for j in (0..2*n-2))
%o [A027284(n) for n in (2..40)] # _G. C. Greubel_, Dec 15 2021
%Y Cf. A026584, A026585, A026587, A026589, A026590, A026591, A026592, A026593, A026594, A026595, A026596, A026597, A026598, A026599, A027282, A027283, A027285, A027286.
%K nonn
%O 2,1
%A _Clark Kimberling_
%E More terms from _Sean A. Irvine_, Oct 26 2019