Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Dec 19 2021 04:33:57
%S 10,40,342,1279,11016,41462,359530,1365014,11899516,45501743,
%T 398306769,1531614109,13450930624,51952990090,457449811458,
%U 1773182087440,15646091896400,60825762159338,537651887201990,2095280066101886,18547910336883720,72432026278468535
%N a(n) = Sum_{k=0..2n-2} T(n,k) * T(n,k+2), with T given by A026552.
%H G. C. Greubel, <a href="/A027274/b027274.txt">Table of n, a(n) for n = 2..1000</a>
%F a(n) = Sum_{k=0..2*n-2} A026552(n,k) * A026552(n,k+2).
%t T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+2)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k] + T[n-1, k-1], T[n-1, k-2] + T[n-1, k]]]]; (* T=A026552 *)
%t a[n_]:= a[n]= Block[{$RecursionLimit = Infinity}, Sum[T[n, k]*T[n, k+2], {k, 0, 2*n-2}]];
%t Table[a[n], {n,2,40}] (* _G. C. Greubel_, Dec 18 2021 *)
%o (Sage)
%o @CachedFunction
%o def T(n,k): # T = A026552
%o if (k==0 or k==2*n): return 1
%o elif (k==1 or k==2*n-1): return (n+2)//2
%o elif (n%2==0): return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
%o else: return T(n-1, k) + T(n-1, k-2)
%o @CachedFunction
%o def a(n): return sum( T(n,k)*T(n,k+2) for k in (0..2*n-2) )
%o [a(n) for n in (2..40)] # _G. C. Greubel_, Dec 18 2021
%Y Cf. A026552, A026553, A026554, A026555, A026556, A026557, A026558, A026559, A026560, A026563, A026564, A026566, A026567, A027272, A027273, A027275, A027276.
%K nonn
%O 2,1
%A _Clark Kimberling_
%E More terms from _Sean A. Irvine_, Oct 26 2019