Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 May 15 2023 11:13:40
%S 0,1,0,1,0,0,3,1,0,0,3,1,0,0,0,6,2,1,0,0,0,7,2,1,0,0,0,0,12,4,2,1,0,0,
%T 0,0,14,4,2,1,0,0,0,0,0,22,6,3,2,1,0,0,0,0,0,27,7,3,2,1,0,0,0,0,0,0,
%U 40,11,5,3,2,1,0,0,0,0,0,0,49,12,5,3,2,1,0,0,0,0,0,0,0,69,17,7,4,3,2,1,0,0,0,0,0,0,0
%N Triangular array T read by rows: T(n,k) = number of partitions of n into an even number of parts, each >=k.
%F T(n, k) = Sum{E(n, i)}, k<=i<=n, E given by A027186.
%F T(n,k) + A027199(n,k) = A026807(n,k). - _R. J. Mathar_, Oct 18 2019
%F G.f. of column k: Sum_{i>=0} x^(2*k*i)/Product_{j=1..2*i} (1-x^j). - _Seiichi Manyama_, May 15 2023
%e Triangle begins:
%e 0;
%e 1, 0;
%e 1, 0, 0;
%e 3, 1, 0, 0;
%e 3, 1, 0, 0, 0;
%e 6, 2, 1, 0, 0, 0;
%e 7, 2, 1, 0, 0, 0, 0;
%e 12, 4, 2, 1, 0, 0, 0, 0;
%e 14, 4, 2, 1, 0, 0, 0, 0, 0;
%e 22, 6, 3, 2, 1, 0, 0, 0, 0, 0;
%e 27, 7, 3, 2, 1, 0, 0, 0, 0, 0, 0;
%e 40, 11, 5, 3, 2, 1, 0, 0, 0, 0, 0, 0;
%e 49, 12, 5, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0;
%o (PARI) T(n, k) = polcoef(sum(i=0, n, x^(2*k*i)/prod(j=1, 2*i, 1-x^j+x*O(x^n))), n); \\ _Seiichi Manyama_, May 15 2023
%Y Cf. A027186, A027187 (1st column), A027188, A027189, A027190, A027191, A027192.
%K nonn,tabl
%O 1,7
%A _Clark Kimberling_
%E More terms from _Seiichi Manyama_, May 15 2023