login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..2n} (k+1) * A027023(n,2n-k).
2

%I #13 Nov 05 2019 01:01:03

%S 1,6,19,56,165,486,1435,4248,12601,37438,111367,331608,988181,2946662,

%T 8791447,26241632,78359825,234069830,699404127,2090385216,6249236653,

%U 18686125070,55884824535,167164064984,500102988889

%N a(n) = Sum_{k=0..2n} (k+1) * A027023(n,2n-k).

%H G. C. Greubel, <a href="/A027044/b027044.txt">Table of n, a(n) for n = 0..1000</a>

%p T:= proc(n, k) option remember;

%p if k<3 or k=2*n then 1

%p else add(T(n-1, k-j), j=1..3)

%p fi

%p end:

%p seq(add((k+1)*T(n,2*n-k), k=0..2*n), n=0..30); # _G. C. Greubel_, Nov 04 2019

%t T[n_, k_]:= T[n, k]= If[k<3 || k==2*n, 1, Sum[T[n-1, k-j], {j,3}]]; Table[Sum[(k+1)*T[n,2*n-k], {k,0,2*n}], {n,0,30}] (* _G. C. Greubel_, Nov 04 2019 *)

%o (Sage)

%o @CachedFunction

%o def T(n, k):

%o if (k<3 or k==2*n): return 1

%o else: return sum(T(n-1, k-j) for j in (1..3))

%o [sum((k+1)*T(n, 2*n-k) for k in (0..2*n)) for n in (0..30)] # _G. C. Greubel_, Nov 04 2019

%K nonn

%O 0,2

%A _Clark Kimberling_