Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Sep 08 2022 08:44:49
%S 1,11,33,77,161,319,613,1157,2161,4011,7417,13685,25217,46431,85453,
%T 157229,289249,532075,978705,1800189,3311137,6090207,11201717,
%U 20603253,37895377,69700555,128199401,235795557,433695745,797690943
%N a(n) = T(n,n+3), T given by A027023.
%H G. C. Greubel, <a href="/A027025/b027025.txt">Table of n, a(n) for n = 3..1002</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2,0,-1,1).
%F G.f.: x^3*(1+8*x+2*x^2-3*x^4)/((1-x)^2*(1-x-x^2-x^3)).
%F a(n) = A000213(n+3) -4*(n+1). - _R. J. Mathar_, Jun 24 2020
%p seq(coeff(series(x^4/((1+2*x)*(2*x^3+x^2-2*x+1)), x, n+1), x, n), n = 3..40); # _G. C. Greubel_, Nov 04 2019
%t Drop[CoefficientList[Series[x^3*(1+8*x+2*x^2-3*x^4)/((1-x)^2*(1-x-x^2-x^3)), {x,0,40}], x], 3] (* or *) LinearRecurrence[{3,-2,0,-1,1}, {1, 11,33,77,161}, 40] (* _G. C. Greubel_, Nov 04 2019 *)
%o (PARI) my(x='x+O('x^40)); Vec(x^3*(1+8*x+2*x^2-3*x^4)/((1-x)^2*(1-x-x^2-x^3))) \\ _G. C. Greubel_, Nov 04 2019
%o (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x^3*(1+8*x+2*x^2-3*x^4)/((1-x)^2*(1-x-x^2-x^3)) )); // _G. C. Greubel_, Nov 04 2019
%o (Sage)
%o def A077952_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P(x^3*(1+8*x+2*x^2-3*x^4)/((1-x)^2*(1-x-x^2-x^3))).list()
%o a=A077952_list(40); a[3:] # _G. C. Greubel_, Nov 04 2019
%o (GAP) a:=[1,11,33,77,161];; for n in [6..30] do a[n]:=3*a[n-1]-2*a[n-2]-a[n-4] +a[n-5]; od; a; # _G. C. Greubel_, Nov 04 2019
%K nonn,easy
%O 3,2
%A _Clark Kimberling_