login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = T(2*n, n+2), T given by A027011.
1

%I #11 Oct 08 2018 19:05:58

%S 1,8,107,654,2801,9859,30869,89951,250780,680665,1818310,4813018,

%T 12674542,33283434,87272241,228658744,598864479,1568137061,4105798635,

%U 10749568905,28143285770,73680744203,192899492252,505018380164,1322156411756,3461451749404

%N a(n) = T(2*n, n+2), T given by A027011.

%H Colin Barker, <a href="/A027013/b027013.txt">Table of n, a(n) for n = 2..1000</a>

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (8,-26,45,-45,26,-8,1).

%F G.f.: x^2*(1+69*x^2-39*x^3+36*x^4-26*x^5+8*x^6-x^7) / ((1-x)^5*(1-3*x+x^2)). - _Colin Barker_, Feb 19 2016

%t LinearRecurrence[{8,-26,45,-45,26,-8,1},{1,8,107,654,2801,9859,30869,89951},30] (* _Harvey P. Dale_, Oct 08 2018 *)

%o (PARI) Vec(x^2*(1+69*x^2-39*x^3+36*x^4-26*x^5+8*x^6-x^7)/((1-x)^5*(1-3*x+x^2)) + O(x^40)) \\ _Colin Barker_, Feb 19 2016

%K nonn,easy

%O 2,2

%A _Clark Kimberling_