login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = T(2*n+1,n+1), T given by A026998.
1

%I #16 Sep 08 2022 08:44:49

%S 1,8,26,73,196,518,1361,3568,9346,24473,64076,167758,439201,1149848,

%T 3010346,7881193,20633236,54018518,141422321,370248448,969323026,

%U 2537720633,6643838876,17393795998,45537549121,119218851368,312119004986,817138163593,2139295485796

%N a(n) = T(2*n+1,n+1), T given by A026998.

%H Colin Barker, <a href="/A027004/b027004.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (4,-4,1).

%F a(n) = Fibonacci(2*n+3) + 2*Fibonacci(2*n+2) - 3.

%F From _Colin Barker_, Feb 18 2016: (Start)

%F a(n) = 2^(-n)*(-3*2^n-(3-sqrt(5))^n*(-2+sqrt(5))+(2+sqrt(5))*(3+sqrt(5))^n).

%F a(n) = 4*a(n-1)-4*a(n-2)+a(n-3) for n>2.

%F G.f.: (1+4*x-2*x^2) / ((1-x)*(1-3*x+x^2)).

%F (End)

%o (Magma) [Fibonacci(2*n+3) + 2*Fibonacci(2*n+2) - 3: n in [0..30]]; // _Vincenzo Librandi_, Apr 18 2011

%o (PARI) Vec((1+4*x-2*x^2)/((1-x)*(1-3*x+x^2)) + O(x^40)) \\ _Colin Barker_, Feb 18 2016

%Y A002878(n+1) - 3.

%K nonn,easy

%O 0,2

%A _Clark Kimberling_