login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Self-convolution of array T given by A026626.
16

%I #17 Jun 23 2024 10:34:58

%S 1,2,11,34,138,492,1830,6804,25576,96728,367932,1405884,5392590,

%T 20751504,80076872,309748096,1200669828,4662772672,18137643524,

%U 70657441212,275620281310,1076429623256,4208562777342,16470788108008,64519534566362,252948764993472,992453764928050

%N Self-convolution of array T given by A026626.

%H G. C. Greubel, <a href="/A026961/b026961.txt">Table of n, a(n) for n = 0..1000</a>

%F From _G. C. Greubel_, Jun 21 2024: (Start)

%F a(n) = Sum_{k=0..n} T(n, k)*T(n, n-k). - _G. C. Greubel_, Jun 21 2024

%F a(n) = (p1(n)*a(n-1) + p2(n)*a(n-2) + p3(n)*a(n-3) + p4(n))/p5(n), where

%F p1(n) = 22589280 - 75610404*n + 85542748*n^2 - 44611965*n^3 + 11592851*n^4 - 1432335*n^5 + 65025*n^6.

%F p2(n) = 32659200 - 131052480*n + 161621002*n^2 - 88742247*n^3 + 23912807*n^4 - 3047097*n^5 + 143055*n^6.

%F p3(n) = 2*(5034960 - 21140910*n + 26659783*n^2 - 14896395*n^3 + 4089431*n^4 - 533919*n^5 + 26010*n^6).

%F p4(n) = 42*(3628800 - 13099136*n + 15429146*n^2 - 8267195*n^3 + 2196857*n^4 - 277797*n^5 + 13005*n^6).

%F p5(n) = 2*n*(-6580128 + 11379344*n - 7168746*n^2 + 2070547*n^3 - 273462*n^4 + 13005*n^5). (End)

%t T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[k==1 || k==n-1, (6*n-1 + (-1)^n)/4, T[n-1,k-1] +T[n-1,k]]];

%t A026961[n_]:= A026961[n] = Sum[T[n,k]*T[n,n-k], {k,0,n}];

%t Table[A026961[n], {n,0,50}] (* _G. C. Greubel_, Jun 21 2024 *)

%o (Magma)

%o p1:= func< n | -1864800 + 1239076*n + 7915984*n^2 - 11263411*n^3 + 5406551*n^4 - 1042185*n^5 + 65025*n^6 >;

%o p2:= func< n | -4505760 + 7236856*n + 10545958*n^2 - 20700889*n^3 + 10823147*n^4 - 2188767*n^5 + 143055*n^6 >;

%o p3:= func< n | -1522080 + 2667320*n + 3116288*n^2 - 6715322*n^3 + 3619972*n^4 - 755718*n^5 + 52020*n^6 >;

%o p4:= func< n | 42*(-376320 + 434044*n + 1225808*n^2 - 1997637*n^3 + 1002947*n^4 - 199767*n^5 + 13005*n^6) >;

%o p5:= func< n | 2*(-559440 + 1665230*n - 243157*n^2 - 1361078*n^3 + 898312*n^4 - 195432*n^5 + 13005*n^6) >;

%o I:=[11, 34, 138]; [1,2] cat [n le 3 select I[n] else (p1(n)*Self(n-1) + p2(n)*Self(n-2) + p3(n)*Self(n-3) + p4(n))/p5(n) : n in [1..40]]; // _G. C. Greubel_, Jun 21 2024

%o (SageMath)

%o @CachedFunction

%o def T(n, k): # T = A026626

%o if (k==0 or k==n): return 1

%o elif (k==1 or k==n-1): return int(3*n//2)

%o else: return T(n-1, k-1) + T(n-1, k)

%o def A026961(n): return sum(T(n,k)*T(n,n-k) for k in range(n+1))

%o [A026961(n) for n in range(41)] # _G. C. Greubel_, Jun 21 2024

%Y Cf. A026626, A026627, A026628, A026629, A026630, A026631, A026632.

%Y Cf. A026633, A026634, A026635, A026636, A026962, A026963, A026964.

%Y Cf. A026965.

%K nonn

%O 0,2

%A _Clark Kimberling_

%E More terms from _Sean A. Irvine_, Oct 20 2019