Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Sep 08 2022 08:44:49
%S 1,10,67,379,1958,9576,45190,208084,941480,4204949,18597694,81635060,
%T 356220369,1547066801,6693361973,28868868733,124194904215,
%U 533156609953,2284722747583,9776008778375,41777089615201,178338353574365,760586650190997
%N a(n) = T(2n,n+4), T given by A026725.
%C Column k=9 of triangle A236830. - _Philippe Deléham_, Feb 02 2014
%H G. C. Greubel, <a href="/A026844/b026844.txt">Table of n, a(n) for n = 4..1000</a>
%F G.f.: (x^4*C(x)^9)/(1-x*C(x)^3) where C(x) is the g.f. of A000108. - _Philippe Deléham_, Feb 02 2014
%F a(n) ~ phi^(3*n-5) / sqrt(5), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - _Vaclav Kotesovec_, Jul 19 2019
%F (7719*n+49402)*(n+3)*a(n) +(7719*n^2-1057949*n-1942990)*a(n-1) +4*(-211672*n^2+2076533*n+763807)*a(n-2) +(4326581*n^2-34087269*n+38502298)*a(n-3) +3*(-1940897*n^2+16395555*n-37085206)*a(n-4) -2*(406705*n-1575734)*(2*n-9)*a(n-5)=0. - _R. J. Mathar_, Oct 26 2019
%t Drop[CoefficientList[Series[(1-Sqrt[1-4x])^9/(64*x^3*(8*x^2-(1-Sqrt[1-4x])^3)), {x,0,40}], x], 4] (* _G. C. Greubel_, Jul 19 2019 *)
%o (PARI) my(x='x+O('x^40)); Vec( (1-sqrt(1-4*x))^9/(64*x^3*(8*x^2 -(1-sqrt(1-4*x))^3)) ) \\ _G. C. Greubel_, Jul 19 2019
%o (Magma) R<x>:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(1-4*x))^9/(64*x^3*(8*x^2 -(1-Sqrt(1-4*x))^3)) )); // _G. C. Greubel_, Jul 19 2019
%o (Sage) a=((1-sqrt(1-4*x))^9/(64*x^3*(8*x^2 -(1-sqrt(1-4*x))^3)) ).series(x, 45).coefficients(x, sparse=False); a[4:40] # _G. C. Greubel_, Jul 19 2019
%Y Cf. A000108, A026725, A236830.
%K nonn
%O 4,2
%A _Clark Kimberling_