login
A026828
Number of partitions of n into distinct parts, the least being 7.
4
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 8, 8, 10, 11, 13, 14, 17, 18, 21, 23, 26, 29, 33, 36, 41, 46, 51, 57, 64, 71, 79, 88, 97, 109, 120, 133, 147, 164, 180, 200, 220, 244, 268, 297, 325, 360, 395, 435, 477, 526, 575, 633, 693
OFFSET
0,25
LINKS
FORMULA
a(n) = A025153(n-7), n>7. - R. J. Mathar, Jul 31 2008
G.f.: x^7*Product_{j>=8} (1+x^j). - R. J. Mathar, Jul 31 2008
G.f.: Sum_{k>=1} x^(k*(k + 13)/2) / Product_{j=1..k-1} (1 - x^j). - Ilya Gutkovskiy, Nov 24 2020
MAPLE
b:= proc(n, i) option remember;
`if`(n=0, 1, `if`((i-7)*(i+8)/2<n, 0,
add(b(n-i*j, i-1), j=0..min(1, n/i))))
end:
a:= n-> `if`(n<7, 0, b(n-7$2)):
seq(a(n), n=0..100); # Alois P. Heinz, Feb 07 2014
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[(i-7)*(i+8)/2 < n, 0, Sum[b[n - i*j, i - 1], {j, 0, Min[1, n/i]}]]]; a[n_] := If[n < 7, 0, b[n-7, n-7]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jun 24 2015, after Alois P. Heinz *)
Join[{0}, Table[Count[ Last /@ Select[IntegerPartitions@n, DeleteDuplicates[#] == # &], 7], {n, 66}]] (* Robert Price, Jun 13 2020 *)
CROSSREFS
Sequence in context: A373067 A096401 A264593 * A025153 A026803 A286041
KEYWORD
nonn
STATUS
approved