Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Jun 09 2021 11:15:01
%S 1,2,3,1,2,4,1,3,5,1,4,2,3,6,1,5,2,4,1,2,3,7,1,6,2,5,3,4,1,2,4,8,1,7,
%T 2,6,3,5,1,2,5,1,3,4,9,1,8,2,7,3,6,4,5,1,2,6,1,3,5,2,3,4,10,1,9,2,8,3,
%U 7,4,6,1,2,7,1,3,6,1,4,5,2,3,5,1,2,3,4,11,1,10,2,9,3,8,4,7,5,6,1,2,8,1,3,7,1,4,6,2,3,6,2,4
%N Juxtaposed partitions of 1,2,3,... into distinct parts, ordered by number of terms and then lexicographically.
%C This is the Abramowitz and Stegun ordering. - _Franklin T. Adams-Watters_, Apr 28 2006
%H Alois P. Heinz, <a href="/A026793/b026793.txt">Rows n = 1..32, flattened</a>
%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
%e The partitions of 5 into distinct parts are [5], [1,4] and [2,3], so row 5 is 5,1,4,2,3.
%e Triangle begins:
%e [1];
%e [2];
%e [3], [1,2];
%e [4], [1,3];
%e [5], [1,4], [2,3];
%e [6], [1,5], [2,4], [1,2,3];
%e [7], [1,6], [2,5], [3,4], [1,2,4];
%e [8], [1,7], [2,6], [3,5], [1,2,5], [1,3,4];
%e [9], [1,8], [2,7], [3,6], [4,5], [1,2,6], [1,3,5], [2,3,4];
%p b:= proc(n, i) b(n, i):= `if`(n=0, [[]], `if`(i>n, [],
%p [map(x->[i, x[]], b(n-i, i+1))[], b(n, i+1)[]]))
%p end:
%p T:= n-> map(x-> x[], sort(b(n, 1)))[]:
%p seq(T(n), n=1..12); # _Alois P. Heinz_, Jun 22 2020
%t Array[SortBy[Map[Reverse, Select[IntegerPartitions[#], UnsameQ @@ # &]], Length] &, 12] // Flatten (* _Michael De Vlieger_, Jun 22 2020 *)
%t b[n_, i_] := b[n, i] = If[n == 0, {{}}, If[i>n, {}, Join[Prepend[#, i]& /@ b[n-i, i+1], b[n, i+1]]]];
%t T[n_] := Sort[b[n, 1]];
%t Array[T, 12] // Flatten (* _Jean-François Alcover_, Jun 09 2021, after _Alois P. Heinz_ *)
%Y Cf. A118457, A118458 (partition lengths), A015723 (total row lengths), A036036, A000009, A246688.
%K nonn,tabf
%O 1,2
%A _Clark Kimberling_
%E Incorrect program removed by _Georg Fischer_, Jun 22 2020