login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = T(2n,n), T given by A026780.
14

%I #26 Jan 13 2024 13:07:18

%S 1,3,12,53,246,1178,5768,28731,145108,741392,3825418,19907156,

%T 104370554,550816506,2924018194,15603778253,83661779470,450479003038,

%U 2435009205992,13208558795146,71879906857596,392320357251928,2147102400154768,11780181236675858,64782405317073968,357022158144941548

%N a(n) = T(2n,n), T given by A026780.

%C Number of paths from (0,0) to (n,n) in the directed graph having vertices (i,j) and edges (i,j)-to-(i+1,j) and (i,j)-to-(i,j+1) for i,j>=0 and edges (i,i+h)-to-(i+1,i+h+1) for i>=0, h>=0.

%H G. C. Greubel, <a href="/A026781/b026781.txt">Table of n, a(n) for n = 0..1000</a>

%H M. A. Alekseyev. <a href="https://arxiv.org/abs/1601.06158">On Enumeration of Dyck-Schroeder Paths</a>. Journal of Combinatorial Mathematics and Combinatorial Computing 106 (2018), 59-68; arXiv:1601.06158 [math.CO], 2016-2018.

%F O.g.f.: S(x)/(1-x*C(x)*S(x)) = (S(x)-C(x))/(x*C(x)), where C(x)=(1-sqrt(1-4x))/(2*x) is o.g.f. for A000108 and S(x)=(1-x-sqrt(1-6*x+x^2))/(2*x) is o.g.f. for A006318. - _Max Alekseyev_, Jan 13 2015

%F D-finite with recurrence 2*n*(132*n-445)*(n+2)*(n+1)*a(n) -n*(n+1) *(5587*n^2 -23082*n +12800)*a(n-1) +2*n*(n-1)*(22870*n^2 -114505*n +116854)*a(n-2) +2*(-90081*n^4 +818062*n^3 -2626791*n^2 +3517598*n -1622544)*a(n-3) +4*(85519*n^4 -1071535*n^3 +4986308*n^2 -10177616*n +7647024)*a(n-4) +(-269235*n^4 +4490125*n^3 -27985152*n^2 +77217236*n -79534224)*a(n-5) +4*(2*n-11)*(8203*n^3 -117312*n^2 +557264*n -879984)*a(n-6) -4*(n-6)*(307*n -1414) *(2*n-11) *(2*n-13)*a(n-7)=0. - _R. J. Mathar_, Feb 20 2020

%p seq(coeff(series(2*(1-x -sqrt(1-6*x+x^2))/(4*x -(1 -sqrt(1-4*x))*(1 -x -sqrt(1-6*x+x^2))), x, n+1), x, n), n = 0..30); # _G. C. Greubel_, Nov 02 2019

%t CoefficientList[Series[2*(1-x -Sqrt[1-6*x+x^2])/(4*x -(1 -Sqrt[1-4*x])*(1 -x -Sqrt[1-6*x+x^2])), {x,0,30}], x] (* _G. C. Greubel_, Nov 02 2019 *)

%o (PARI) C = (1-sqrt(1-4*x+O(x^51)))/2/x; S = (1-x-sqrt(1-6*x+x^2 +O(x^51) ))/2/x; Vec(S/(1-x*C*S)) /* _Max Alekseyev_, Jan 13 2015 */

%o (Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 2*(1-x -Sqrt(1-6*x+x^2))/(4*x -(1 -Sqrt(1-4*x))*(1 -x -Sqrt(1-6*x+x^2))) )); // _G. C. Greubel_, Nov 02 2019

%o (Sage)

%o def A026781_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P(2*(1-x -sqrt(1-6*x+x^2))/(4*x -(1 -sqrt(1-4*x))*(1 -x -sqrt(1-6*x+x^2)))).list()

%o A026781_list(30) # _G. C. Greubel_, Nov 02 2019

%Y Cf. A026671.

%Y Cf. A026780, A026782, A026783, A026784, A026785, A026786, A026787, A026788, A026789, A026790.

%K nonn

%O 0,2

%A _Clark Kimberling_

%E More terms from _Max Alekseyev_, Jan 13 2015